

Presented by R.Baskar, AMIE (Mech) ASNT NDT Level III RT,UT,PT & MT CSWIP 3.2 AWS – SCWI

Weld metal

21.5

29.0 17.0 Horizontal Taper

2 GE Confidential and Proprietary Information GE©2007 All Rights Reserved

Normal Radiography

Off-set Radiography

5

Ultrasonic Testing using angled compression wave

Radiographic Film Interpretation & Ultrasonic signal evaluation

- Cladding indications are appeared as projected image in the normal radiography
- Off-set radiography aiming for valve side fusion face, no indication noticed
- Off-set radiography aiming for pipe side fusion face, indication noticed
- Defects are not found by ultrasonic testing

Conclusion from Radiographic Film Interpretation & Ultrasonic signal evaluation is that "indications are in cladding"

Geometric Unsharpness

RT Indication Location

С

RT Indication Location

	Weld No.	Bifab Drg No.	Size	Bifab Drg item no	Valve Serial No.	<u>RT</u> report No.	Distance from root toe (C)	
	W3	BI 398-PI-TMT1-011	6"x14.3mm	14C	BO 555	R290	11 mm	
	W6	BI 398-PI-TMT1-007	6"x14.3mm	18A	BO 612	R221	10 mm	
	W15	BI 398-PI-TMT1-006	6"x14.3mm	18	BO 614	R284	6 mm	
	W6	BI 398-PI-TMT1-006	6"x14.3mm	17B	BO 547	R308	10 mm	
	W15	BI 398-PI-TMT1-004	6"x14.3mm	19	BO 548	R212	13 mm	
	W16	BI 398-PI-TMT1-004	6"x14.3mm	19	BO 548	R213	16 m m	
	W2	BI 398-PI-TMT1-009	6"x14.3mm	12B	BO 551	R313	14 m m	
	W3	BI 398-PI-TMT1-009	6"x14.3mm	12B	BO 551	R314	11 mm	
	W6	BI 398-PI-TMT1-009	6"x14.3mm	12A	BO 573	R315	14 m m	
	W4	BI 398-PI-TMT1-011	6"x14.3mm	14C	BO 555	R291	13 m m	
	W5	BI 398-PI-TMT1-009	6"x14.3mm	12A	BO 561	R349	13 mm	
	W16	BI 398-PI-TMT1-011	6"x14.3mm	14B	BO 553	R322	12 mm	
	W15	BI 398-PI-TMT1-007	6"x14.3mm	18	BO 609	R338	10 mm	
	W16	BI 398-PI-TMT1-005	6"x14.3mm	18	BO 613	R330	13 mm	
	W15	BI 398-PI-TMT1-011	6"x14.3mm	14B	BO 553	R337	11 mm	
	W6	BI 398-PI-TMT1-011	6"x14.3mm	17B	BO 557	R369	1 m m	only in two location, 4 mm size
	W15	BI 398-PI-TMT1-005	6"x14.3mm	18	BO 613	R329	11 mm	
	W2	BI 398-PI-TMT1-006	6"x14.3mm	17A	BO 554	R331	12 mm	
GE imagino	a W3	BI 398-PI-TMT1-006	6"x14.3mm	17A	BO 554	R332	14 m m	
	W5	BI 398-PI-TMT1-007	6"x14.3mm	17B	BO 542	R326	10 mm	

Based on 20 welds

Indications are located away from the HAZ

Macro Section

Bodycote TESTING

BURNTISLAND FABRICATORS LTD

REF No

E807335 : Issue 2

WELD PROCEDURE TEST: CEW-667 MATERIAL: 6" x 14.3mm WT DUPLEX UNS S31803/INCONEL CLAD F60

12 Proprietary Information 2007 All Rights Reserved

Quality Control Requirement

Weld type	Stages	PSL 1	PSL 2	PSL 3 <mark>/PSL 3G</mark>	PSL 4	
Pressure-containing	Preparation	_	_	а		
	Completion	—	a, b and (c or d)	a, b, (c or d), and e	No welding permitted	
Non-pressure-containing	Preparation	_	_	а	No welding	
	Completion	-	а	a and e	permitted	
Repair	Preparation	_	h	h	No welding permitted	
	Completion	-	a, b and (forg)	a, b, e and (forg)		
Weld metal overlay (ring grooves, stems, valve-	Preparation	_	-	b	р	
bore sealing mechanisms and choke trim)	Completion	-	b	b	b	
Weld metal corrosion- resistant alloy overlay	Preparation	а	а	a	а	
(bodies, bonnets and end and outlet connections)	Completion	a, b	a, b	a, b, i	a, b, i	

Table 12 - Quality control requirements for welding

a Visual examination.

b Penetrant testing inspection for non-ferromagnetic materials and magnetic particle testing for ferromagnetic material.

c Radiation (radiography or imaging) examination.

d Ultrasonic examination.

e Hardness test (weld).

f Ultrasonic examination only if weld is greater than 25 % of wall thickness, or 25 mm (1 in), whichever is less.

- g Radiation (radiography or imaging) examination only if weld is greater than 25 % of wall thickness for PSL 2, or 20 % of wall thickness for PSL 3, or 25 mm (1 in), whichever is less.
- h Penetrant or magnetic particle as applicable for material defects only.
- Measurement of overlay thickness, testing of bond integrity and volumetric examination shall be according to the manufacturer's specifications. If the overlay is considered part of the manufacturer's design criteria or of the design criteria of this International Standard, volumetric examinations shall be in accordance with the methods and acceptance criteria of 7.4.2.3.15.

NOTE Preparation = Surface preparation, joint preparation, fit-up and preheat. Completion = After all welding, post-weld heat treat and machining. 13 etary Information Il Rights Reserved

Summary

✓ Majority of indications are away from "Single Vee Groove weld ", and confirmed that, it is in the cladding

✓ Enlargement of indication size due to Ug (Geometric Unsharpness) is upto 1 mm

✓ Location of the indications are away from the HAZ

✓ Indications are sub-surface. The same has been confirmed by visual and DPT .

✓ Minimum cladding thickness required is 3mm, but actual thickness available is approximately 4mm

✓ Cladding is not a part of design thickness

Summary

✓ Petrolvalve has confirmed that cladding is not part of design thickness. Statement will be forwarded to BP

✓ VG will address cladding quality issue with Petrolvalve. VG will evaluate corrective measures in VG valve specification

✓ Corrective measures may imply

- Restricting cladding process to GTAW (eliminating GMAW) to improve weld overlay quality
- Increasing NDE by adding volumetric NDE for the weld end area
- Increase witness activity on welding/NDE at valve supplier
- Consider pup piece, although pup piece does not improve quality of cladding but cladding issues is addressed at valve manufacturer before arriving fabrication site

Conclusion

 \checkmark Based on the review of x-ray films and evaluations, the indication in the cladding will not affect the integrity of the valves. The valves are fit for purpose.

✓ Leave indication in the cladding as is.

Thanks

